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1   |   INTRODUCTION

Deletions localized to chromosome region 7q31 have been 
found in individuals with neurodevelopmental disorders 
characterized by delayed speech and language impair-
ment. The majority of the deletions include the forkhead 
box P2 (FOXP2) gene, a transcription factor that is highly 
expressed in the brain and essential for proper brain de-
velopment and function.1 Disruption of the gene causes 
autosomal dominant FOXP2-related speech-language 
disorder 1 (SPCH1; OMIM 602081) with core features 
of childhood speech apraxia and orofacial dyspraxia.2 
Affected individuals may also have dysarthria, moder-
ate to severe receptive and expressive language disor-
der, and reading and spelling impairments. In addition 

to speech- and language-related phenotypes, a broad 
spectrum of clinical manifestations such as mild motor 
delay, mild cognitive impairment, behavioral anomalies, 
and mild facial dysmorphism have been reported in af-
fected individuals with variants in FOXP2.3 Causative 
genetic alterations of FOXP2 include missense, frame-
shift, and nonsense variants, intragenic deletions, whole 
gene deletions, translocations, inversions interrupting 
the reading frame, and maternal uniparental disomy for 
chromosome 7.3-14 Furthermore, several recent reports 
describe patients with language and speech disorders 
in whom structural variants or deletions were identified 
that do not interrupt the coding region of the FOXP2 
gene itself, but perturb nearby genomic regions. It has 
been hypothesized that these structural abnormalities 
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Abstract
Haploinsufficiency of FOXP2 causes FOXP2-related speech and language disor-
der. We report a 9.8 Mb deletion downstream of FOXP2 in a girl with speech and 
language impairment, developmental delay, and other features. We propose in-
volvement of FOXP2 in pathogenesis of these phenotypes, likely due to positional 
effects on the gene.
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and deletions affect non-coding regulatory elements of 
the gene.1,15,16,17,18

Recently, a heterozygous 4.7  Mb deletion at 
7q31.2q31.31 that is located 600 kb downstream of the 
FOXP2 gene was identified in three family members with 
speech, language, and neurodevelopmental phenotypes 
including microcephaly. The 15 protein-coding genes 
included in the deletion have no known implications in 
language disorder, and phenotypes of the affected individ-
uals overlapped highly with those in FOXP2-related lan-
guage and speech disorder, suggesting the involvement of 
FOXP2 in pathogenesis, likely due to positional effects on 
the gene.19 Here, we report a 6-year-old girl with language 
impairment, global developmental delay, relative micro-
cephaly, attention deficit/hyperactivity disorder (ADHD), 
and learning difficulties with a heterozygous 9.8 Mb de-
letion at 7q31.2-q31.33 that is located 550 kb downstream 
of the FOXP2 gene. The deletion was inherited from her 
father, who also has a history of abnormal speech and 
learning disabilities.

2   |   CLINICAL REPORT

The proband is a 6-year-old female who was born to non-
consanguineous parents. She was delivered at 37 weeks 
gestational age with a birth weight of 3.77 kg (74th percen-
tile) and head circumference of 33.5 cm (22nd percentile). 
Pregnancy, labor, and delivery were complicated by ma-
ternal treatment with ziprasidone (Geodon®, Pfizer) and 
metformin as well as exenatide (Byetta®, Amylin). She had 
a low heart rate and was noted to have extra cartilage on 
her ear, which has been surgically removed.

She initially presented for evaluation at 10  months 
of age due to microcephaly. On examination, her weight 
was 6.975 kg (0.5 percentile); her height was 64.3 cm (0.4 
percentile), and her head circumference was 41 cm (0.1 
percentile). She was proportionally small. According to 
her medical records, her head circumference had fallen 
below the second percentile for age by 2 months and per-
sisted on a curve paralleling the normal curve until at least 
18 months of age. An MRI scan of her brain and spine 
showed a Chiari malformation and a tethered spinal cord, 
respectively, which subsequently were relieved by surgical 
procedures.

She was developmentally delayed, especially in gross 
motor skills, which was first noted by 16 months of age. 
She rolled over at 3 months and sat up at about 8 months. 
At 16 months of age, she was able to crawl and stand, 
and she walked starting around 18 months. She was not 
yet talking but did make some noises and started her first 
occupational and physical therapy at 16 months of age. 
At 6 years of age, she is in the first grade and has been 

receiving special education services with an IEP under 
the category of global developmental delay. She receives 
speech, occupational, and physical therapy through 
school. Her speech therapist noted that she has severe 
receptive expressive language impairment. Her full-scale 
IQ score was 67 with relative strength in her visual spa-
tial skills and relative weakness in verbal comprehension 
skills. She also was diagnosed with attention deficit/hy-
peractivity disorder (ADHD) and borderline intellectual 
functioning.

At her 6-year-old evaluation her weight was 23.1  kg 
(69th percentile); her height was 113.5 cm (20th percen-
tile), and her head circumference was 48.2 cm (10th per-
centile). Due to unclear speech, her words were noted to 
be challenging to understand. She had mild dysmorphic 
features including epicanthal folds, mildly flat nasal root, 
malar hypoplasia, and a long philtrum (Figure 1). Her ears 
were normally set with residual ear tags. There was mild 
hypoplasia of the helices bilaterally. Limb examination re-
vealed a short fifth right metacarpal and mild clinodactyly 
of the fifth fingers bilaterally. There was clinodactyly of 
toes 3, 4, and 5 bilaterally.

The family history is significant on both sides 
(Figure  2). Her mother and maternal half-uncle have 
learning disabilities. Her father's history is significant for 
learning disabilities, affective disorder, seizure disorder, 
abnormal speech (described as nasal and hypophonic, 
with normal language), and Tourette syndrome. Paternal 
grandparents are negative for these features. Her paternal 
aunt has a history of unspecified neurologic and psycho-
logic issues. The proband's older sister has learning and 
behavioral difficulties at school and is diagnosed with 
ADHD, although her learning difficulties are much milder 
than the proband.

3   |   RESULTS

Fragile X molecular testing was performed and was nega-
tive. Chromosomal microarray (CMA) analysis was per-
formed on genomic DNA from peripheral blood using 
the Applied Biosystems CytoScan HD array platform 
(ThermoFisher Scientific, Carlsbad, CA) and identified a 
9.8 Mb deletion at 7q31.2-q31.33 (arr[hg19] 7q31.2-q31.33 
(114,888,786-124,720,929)x1), including 75 total genes 
and 32 OMIM genes (Table S1). According to the most re-
cent ACMG technical standard,20 this variant is classified 
as pathogenic (score >0.99). Subsequently, familial CMA 
studies were performed for the proband's father, mother, 
older sister, and paternal grandmother and revealed the 
same deletion was present in only her father. Her paternal 
grandfather was unavailable for testing. Written informed 
consent was obtained from the proband and her family 
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for testing and publication of clinical data, as approved 
by the institutional review board at Indiana University 
(IRB#1811364611).

4   |   DISCUSSION

We describe a girl who has a paternally inherited 9.8 Mb 
deletion at 7q31.2-q31.33, located 550 kb downstream of 
the FOXP2 gene, with features including speech and lan-
guage impairment, global developmental delay, learn-
ing difficulties, relative microcephaly, ADHD, and mild 
dysmorphic features. The deletion was inherited from 
her father who has a history of learning disabilities, af-
fective disorder, seizure disorder, abnormal speech, and 
Tourette syndrome. While most of the reported deletions 
in this region include the FOXP2 gene, there are a few re-
ported individuals with speech and language impairment 

who carry a ~3–5 Mb deletion located near but not includ-
ing FOXP2 (Figure 3). A 4.7 Mb deletion at 7q31.2q31.31, 
overlapping our proband's deletion, has been reported in 
three members of a family with speech and language is-
sues, learning difficulties, microcephaly, and ADHD.19 
The shared deleted region contains 13 OMIM genes, and 
both deletions are located 550 ~ 600 kb downstream of the 
FOXP2 gene. In addition, a 3.2 Mb deletion overlapping 
our proband's deletion has been identified in a girl with 
developmental delay and hearing loss.1 Although clinical 
information was limited, the girl also has delayed speech 
and language development. The 3.2  Mb deletion is lo-
cated 1300 kb downstream of the FOXP2 gene and con-
tains the same 13 OMIM genes. Overlapping phenotypes 
of these affected individuals suggest that these deletions 
likely share a common molecular pathogenesis relating 
to speech and language development. In addition to these 
published cases, there is one de novo deletion case in the 

F I G U R E  1   Photographs of the 
proband at 6 years and 5 months. Note 
mild dysmorphic features including 
epicanthal folds, mildly flat nasal 
root, malar hypoplasia, and a long 
philtrum, hypoplasia of the helices. 
Limb examination showed a short fifth 
metacarpal on the right and bilateral mild 
clinodactyly of the fifth fingers.
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F I G U R E  2   Pedigree of 7q31 deletion. The proband (III-6) and her father (II-3) with 7q31 deletion are indicated by solid gray shading. 
This sibling (III-7), mother (II-5), and paternal grandmother (I-3) tested negative for the deletion. No other family members were available 
for testing. ADHD, attention deficit hyperactivity disorder; DM2, diabetes mellitus type 2; HTN, hypertension.

F I G U R E  3   Schematic overview of the chromosome 7q31 region from the UCSC Genome Browser38 with the FOXP2 gene highlighted 
in light blue. Black bars represent deletions found in individuals from our study,1,19 and DECIPHER case 254,200. The blue bar shows an 
experimentally validated enhancer in the VISTA enhancer database.35 The red bar shows the topologically associated domain (TAD) that 
includes FOXP2 and partially overlaps the deleted regions.
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DECIPHER database (patient 254,200) with similar break-
points to our proband's deletion, although no phenotypic 
information was provided.

The 13 OMIM genes in the deleted region shared 
among these previously reported patients and the cur-
rent patient were reviewed in previous studies and in our 
study.1,19 Among them are three disease-causing genes, 
CFTR, MET, and CAV1. None of these genes have been 
implicated yet in language development. CFTR is asso-
ciated with autosomal recessive cystic fibrosis (OMIM 
#219700), and congenital bilateral absence of vas defer-
ens in males (OMIM #277180). MET is a proto-oncogene 
associated with papillary renal cell carcinoma 1 (OMIM 
#605074), and CAV1 is associated with primary pulmo-
nary hypertension (OMIM #615343) and lipodystrophies 
(OMIM #606721 and #612526). The individuals in the cur-
rent study do not have any clinical signs suggesting these 
disorders.

Among the remaining 10 OMIM genes, CAPZA2 and 
ST7 are predicted to be intolerant to loss of function (pLI 
score = 1), and CAPZA2 has implications in neurological 
phenotypes. CAPZA2 is one of numerous capping pro-
teins that regulates the elongation and depolarization of 
actin filaments at the fast-growing end. Two heterozygous 
missense variants in CAPZA2 were identified in two un-
related individuals presenting with developmental delay, 
speech delay, intellectual disability, hypotonia, and sei-
zures.21 Patient-identified variants showed both mild loss 
of function and dominant negative effects in Drosophila. 
A third patient was recently reported with an in-frame de-
letion of CAPZA2, and a phenotype including global de-
velopmental delay and secondary microcephaly.22 Thus, 
a pathogenic contribution of CAPZA2 hemizygosity can-
not be completely excluded in our proband's phenotypes, 
while supporting data for haploinsufficiency of this gene 
is very limited. CTTNBP2 is an actin cytoskeleton regula-
tor and is exclusively expressed in the brain with high ac-
cumulation at dendritic spines.23,24 Variants in CTTNBP2 
have been linked to autism spectrum disorders (ASD).25-28 
However, the pLI score in gnomAD (v.2.1.1) is 029 and the 
clinical significance of a heterozygous deletion of this 
gene remains unclear.

In addition to the genes discussed above, the 9.8  Mb 
deletion found in our proband contains 19 other OMIM 
genes. These include three disease-causing genes 
(TSPAN12, AASS, and FEZF1), associated with auto-
somal dominant exudative vitreoretinopathy 5 (OMIM 
#613310), autosomal recessive hyperlysinemia type I 
(OMIM #238700), and autosomal recessive hypogonado-
tropic hypogonadism 22 with or without anosmia (OMIM 
# 616030), respectively. These genes currently have no 
known implications in speech disorders or cognitive im-
pairment. ING3, PTPRZ1, and FEZF1 are predicted to be 

intolerant to loss of function (pLI ≥ 0.9), though they have 
no known association with speech disorders. Variants in 
the calcium-dependent activator protein for secretion 2 
(CADPS2) gene have been found in individuals with in-
tellectual disability and ASD.30 However, the pLI score in 
gnomAD (v.2.1.1) is 0.37 and the clinical significance of 
hemizygosity for this gene is unknown.

Since chromosome 7 is known to harbor a number of 
differentially methylated genes, we evaluated whether 
any of the deleted genes could be associated with an im-
printing effect. To date, there are three known imprinted 
regions distributed along chromosome 7. These are clus-
tered in regions located at 7p11.3-p15.3, 7q21, and 7q32, 
and none overlap with the deletion observed in our pro-
band.31 While there are no known imprinted genes in the 
deleted region, it is notable that one study has suggested 
FOXP2 is subject to the epigenetic mechanism of random 
monoallelic expression (RMAE), where some cells in the 
body express only the maternal allele and others express 
only the paternal allele.15 Thus, it is possible that a mecha-
nism other than haploinsufficiency plays a role in the phe-
notypic manifestations of FOXP2-related disorders.

Given the absence of definitive candidate genes within 
the deletion for the proband's phenotypes, we propose the 
FOXP2 gene is involved in our proband's language-related 
phenotypes via a positional effect, in agreement with the 
previously reported case.19 FOXP2 may be also responsi-
ble for proband's other features such as developmental 
delay and cognitive impairment that falls within a broad 
spectrum of FOXP2-related disorders.3 The proband's fa-
ther has a history of learning issues, seizures, abnormal 
speech, and Tourette syndrome, which suggests variable 
expressivity. To date, all reported cases of FOXP2-related 
disorder have been fully penetrant, but there is consid-
erable intrafamilial and interfamilial variability of both 
speech impairment and cognitive ability.3

Alternatively, other genes within the deletion may be 
causing these phenotypes. Features such as autism spec-
trum disorder and global developmental delay are more 
common in individuals with large deletions including 
FOXP2 and other neighboring genes compared with those 
carrying variants affecting only FOXP2, suggesting poten-
tial clinical significance of neighboring genes (Morgan, 
Fisher, Scheffer, & Hildebrand, 2016), although we do not 
currently have any strong candidate genes for these phe-
notypes. Disruption of non-coding regulatory elements of 
FOXP2 has been a proposed mechanism in cases of struc-
tural variation such as balanced translocation or inversion 
with breakpoints near the gene.16-18 Experimental con-
firmation of transcriptional effects on the gene has thus 
far been impossible or inconclusive as FOXP2 expression 
level is very low in easily accessible tissues such as periph-
eral blood and skin fibroblasts.18,19
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Although it is not fully understood how the gene ex-
pression is controlled via cis-regulatory elements outside of 
the coding region, putative enhancers of FOXP2 have been 
identified, some of which show enhancer activities by func-
tional assays.16,32,33 These reported enhancers are in close 
proximity to FOXP2, and none of them are within the de-
leted genomic region in our proband. It is known that reg-
ulatory elements generally can be present as much as 1 Mb 
in either direction from the transcription unit.34 The VISTA 
enhancer database showed that there is one experimentally 
validated enhancer within the deleted region that is located 
~1 Mb downstream of FOXP2 (Figure 3),35 and it may be 
possible that this plays a role in regulating FOXP2 transcrip-
tion. Alternatively, this deletion may alter 3D chromatin 
structure around FOXP2, which may perturb interactions 
of critical chromatin sites for the gene regulation. FOXP2 
and a part of the deletion in our proband are within the 
same topologically associated domain (TAD) where prefer-
ential internal interactions of chromatin occur36 (Figure 3). 
It has been shown that large deletions can influence local 
chromatin structure while effects are variable by locus37; 
therefore, further investigation on the effects of this dele-
tion on chromatin structure is needed.

In conclusion, we report a paternally inherited 9.8 Mb 
deletion at 7q31.2-q31.33 in a girl with speech and language 
impairment, developmental delay, learning difficulties, rel-
ative microcephaly, ADHD, and mild dysmorphic features. 
Her father who carries the same deletion has overlapping 
but distinct features, suggesting variable expressivity. The 
molecular mechanism causing these clinical features re-
mains to be fully elucidated. Functional studies and ad-
ditional cases with similar deletions will help us better 
understand the clinical significance of this genomic region.
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